A Specialized Genetic Algorithm for Numerical
Optimization Problems

Cezary Z. Janikow™ Zbigniew Michalewicz!

Abstract

This paper describes a specialized genetic algorithm for numerical optimization
problems and discusses the application of such algorithms to discrete-time optimal
control problems. Numerical results obtained here are compared with those obtained
from a classical genetic algorithm and a system for construction and solution of
large and complex mathematical programming models, GAMS. As this specialized
algorithm is only a part of a proposed unified generic package, further extensions
are also outlined.

1 Introduction

This paper describes a specialized genetic algorithm suitable for all parameter optimiza-
tion problems where high precision is required.

Traditionally, genetic algorithms are applicable to a broad range of problems. In
particular, the problem of tuning parameters of some system (without any constraints) is
considered to be one for which genetic algorithm performs very well. However, there are
problems where the domains are unlimited, the number of parameters is quite large, and
a high precision is required. These requirements imply that the length of the (binary)
solution vector, necessary to be constructed for the algorithm, is quite significant (for
100 variables with domains in the range (—500,500), where the precision of six decimal
digits is required, the length of the binary solution vector is 3000). For such problems
the performance of genetic algorithms is quite poor. In addition, it is widely recognized
that genetic algorithms are not well suited to perform fine local exploitation [Grefenstette,
1987], which prohibits obtaining high precision solutions; it is widely recognized that for
such cases the only solution is to apply some other specilized methods to such approximate
solutions obtained from the genetic algorithm.

We introduce a specialized genetic algorithm based on a floating point representation,
with several “genetic” operators suitable for performing both space exploration and highly

*Department of Computer Science, University of North Carolina, Chapel Hill, NC, 27599, USA
tDepartment of Computer Science, University of North Carolina, Charlotte, NC 28223, USA

local exploitation. As our intuition suggests, and the experiments support, this algorithm
is capable of finding the correct solution to very high precision, otherwise not possible in
the sigle algorithm scenario.

As our study case, we selected two optimization problems of discrete time dynamic
control systems. As it is well known, the task of designing and implementing algorithms
for solving the optimal control problems is a difficult one. The highly touted dynamic
programming is a mathematical technique that can be used in variety of contexts, par-
ticularly in optimal control (¢f. [Bertsekas, 1987]). However, this approach breaks down
on problems of moderate size and complexity, suffering from what is called the “curse of
dimensionality” [Bellman, 1957].

In particular, optimal control problems are quite difficult to deal with numerically.
The numerical dynamic optimization programs available for general users are typically
offspring of the static packages [Brooke et al., 1988|, and they do not use dynamic—-
optimization specific methods; they do not make an explicit use of the Hamiltonian,
transversality conditions, etc. On the other hand, if they did use the dynamic-optimization
specific methods, they would be even more difficult to be handled by a layman.

Genetic algorithms require little knowledge of the problem itself. Therefore, computa-
tions based on these algorithms are attractive to users without the numerical optimization
background. Genetic algorithms have been quite successfully [Goldberg, 1989], [DeJong,
1985], [Vignaux & Michalewicz, 1989a,b,c] applied to static optimization problems like
wire routing, scheduling, transportation problem, travelling salesman problem, etc., but,
to the best of authors” knowledge, they have not been applied to optimal control problems:
due to mentioned size of the representation vector, and to high precision requirements. In
this paper we present a first step toward a genetic algorithm based standard package: here
we try to design a system able to overcome both the size and precision problems (which
are strongly related). In other related publications (e.g. [Michalewicz et al., 1990), we
present an extention able to deal with any class of linear constraints. Such a system,
when implemented, may prove to be a very powerful, yet user friendly, tool in solving the
broad class of numerical optimization problems with linear constraints, with a precision
higher than that of currently available packages.

For a comparative evaluation of the performance of the genetic algorithm, we use a
version (called Student Version) of a commertial computational package for construction
and solution of large and complex mathematical programming models, called GAMS
([Brooke et al., 1987]). In the rest of the paper we will refer to this system as GAMS only.

The remainder of this paper is organized as follows. Section 2 gives an overview of
genetic algorithms. In Section 3 two simple optimal control problems are formulated,
and solved analytically so that the reference points for comparisons are available. In
Section 4 the specialized genetic algorithm is described, by discribing its differences from
the classical one. In Section 5 the results of application of this algorithm to the control
problems are presented. In Section 6 the analytical solutions of the test problems are
presented, and the performance of this system is compared with that of the classical
genetic algorithm and of GAMS. Section 7 provides some concluding remarks, along with

further planned extentions.

2 Genetic Algorithms

Genetic algorithms ([Davis, 1987], [De Jong, 1985], [Goldberg, 1985], [Holland, 1975]) are
a class of probabilistic algorithms, which begin with a population of randomly generated
candidates and “evolve” towards a solution by applying “genetic” operators, modeled on
genetic processes occurring in nature.

For a given optimization problem, at each generation ¢ of a genetic algorithm, it
maintains a population of solutions P(t) = {x},..., 2!}, where 2! is a feasible solution,
t is the generation number, and n is arbitrarily chosen size of the population. This
population undergoes simulated evolution; at each generation relatively good solutions
reproduce, the relatively bad solutions die out, and are replaced by the offspring of the
former ones. The initial population may be a set of random feasible solutions, which may
also express some additional knowledge about the nature of the problem. To distinguish
between different solutions, the function being optimized, f(x!), is used — it plays the
role of the environment (see Figure 1). The evolutionary process is based on two primary
operators: mutation and crossover.

procedure genetic algorithm
begin
t=20
initialize P(t)
evaluate P(t)
while (not termination-condition) do
begin
t=t+1
select P(t) from P(t—1)
recombine P(t)
evaluate P(t)
end
end

Figure 1: A simple genetic algorithm.

The crossover combines the features of two parent structures to form two similar
offspring. Crossover operates by swapping corresponding segments of a string of par-
ents. For example, if chromosomes are represented by five-dimensional vectors, say
x1 = {ay,by,c1,dy,er) and x9 = (ag, by, ¢a,ds, e3), then crossing the vectors after the
second element would produce the offspring (ay, by, ¢2, ds, €3) and {as, bs, ¢1,dy, e1). Such
an action allows for random, yet structured exchange of information contained in different
solutions.

The mutation operator arbitrarily alters one or more components of a selected struc-
ture, which increases the variability of the population. Each bit position of each vector
in the new population undergoes a random change with equal probability.

An additional inverse operator is also usually used. Such an operator inverses the
ordering of a random part of a chromosome, and its applicability is based on itroducing
“fairness” to different kinds of solutions in the presence of mutation and crossover.

The theoretical basis of a genetic algorithm state that, in a given population, chromo-
somes (solutions) better suited to the environment (evaluation) will have exponentially
greater chance of survival, and, therefore, better chance of producing offspring [Holland,
1976]. Moreover, this genetic search method is far from being a pure hill-climbing, for
at any time it provides for both exploitation of the best solutions, and exploration of the
search space.

A genetic algorithm for a particular problem must have the following five components:

1. A genetic representation of solutions to the problem:;
2. A way to create an initial population of solutions;

3. An evaluation function that plays the role of the environment, rating solutions in
terms of their “fitness”;

4. Genetic operators that alter the composition of children during reproduction; and

5. Values for the parameters that the genetic algorithm uses (population size, proba-
bilities of applying genetic operators, etc.).

In our implementation we have used a specialized genetic algorithm designed to work
on numerical problems. All modification to the above classical version are described in
Section 4 of this paper.

3 Two Optimal Control Problems

Two simple discrete-time optimal control models have been chosen as test problems for
the specialized genetic algorithm.

The first is a one-dimensional linear-quadratic model:

min ¢ - 2% + X0 (s 27 + 1) (1)
subject to
l‘k_H:CL‘IEk-l—b"LLk,kZO,l,...,N—l, (2)

where z(is given, a,b, q, s, are given constants, x; € R, is the state and u; € R is the
control of the system.

The second test problem is

max Y3 /e (3)
subject to

Tpr1 = Q- Tf — Uy (4)
and

To = TN (5)

where initial state z is given, a is a constant, and z; € R and u, € R are the state and
the (nonnegative) control, respectively.

Let us recall that the value for the optimal performance of (1) subject to (2) is
where K, is the solution of the Riccati equation

Ky =s+ra*Ky1/(r +b*Kgy), and (7)
KN =dq.

The optimal value J* of (3) subject to (4) and (5) is (after elementary calculations):

* . N_1 2
o= [y ®
The optimal control and state trajectory can obviously be determined analytically as well.

The value N = 45 is chosen as the largest horizon for which a comparative numerical
solution from GAMS was still achievable.

Problem (3) subject (4) and (5) will be solved for the following values of N: N = 2,
N =4, N =10, N =20, and N = 45.

Case | N | =z s r q a b
1|45 | 100 1 1 1 1 1

IT | 45 | 100 10 1 1 1 1
I1T | 45 | 100 | 1000 1 1 1 1
IV | 45 | 100 1 10 1 1 1
V | 45 | 100 1 | 1000 1 1 1
VI | 45 | 100 1 1 0 1 1
VII | 45 | 100 1 1 | 1000 1 1
VIII | 45 | 100 1 1 11 0.01 1
IX | 45 | 100 1 1 1 1] 0.01
X | 45 | 100 1 1 1 1| 100

Table 1. Ten test cases for the problem (1) subject to (2).

4 The Specialized Genetic Algorithm

The specialized version of a genetic algorithm we have used is designed especially to work
on numerical parameter optimization problems with real valued domains. The main objec-
tive behind this implementation was to move the genetic algorithm closer to the problem
space. Such a move forced, but also allowed, the operators to be more problem specific
— by utilizing some real space specific characteristics. For example, such representation
has the property that two points, close to each other in the representation space, must
also be close in the problem space, and vice versa. On the contrary, this is not true in
the binary approach, where the distance in a representation is normally defined by the
number of different bit positions. One of the advantages of this algorithm is that it is
well suited to perform local fine tuning (due to dynamic operators), a property normally
not attributed to such algorithms. Another of its advantages is that it is less dependent
on the problem, or the function itself (due to function mapping, as described shortly).

4.1 The Representation

We use floating point, rather than binary, representation. Such a representation does not
enjoy the theoretical foundations given for the binary case ([Holland, 1975]), but it was
empirically shown to give respectable results for real valued parameter optimization ([De
Jong, 1990]). The reason for the applicability of such floating point representation is that
it matches the problem objectives (real values) closer than the binary one, which requires
an extra mapping:
Range of representation — Domain

Because of this mismatch, the binary representation is less applicable to implementing our
main objective — moving the genetic algorithm closer to the problem space, all in order
to implement problem specific operators. As mentioned earlier, our representation allows
to operate more directly in the problem space, allowing, for example, the implementation
of the dynamic operators, introduced shortly.

The exact representation is as follow: for a problem of n variables, each chromosome,
representing a permissible solution, is represented as a vector of n floating point numbers
2t = (vy,...,v,). The precision of such a representation is fixed for a given machine, and
based on the precision of the floating point (or double, if needed) type.

4.2 The Specialized Operators

The operators we use are quite different from the classical ones, as they work in a different
space (real valued). However, because of intuitional similarities, we will divide them into
the standard three classes: mutation, crossover, and inverse. In addition, we divide the
operators into static and dynamic, where static ones do not change over the life of the
population, while dynamic ones are functions of ¢.

Mutation group:

e static random mutation, defined similarly to that of the classical version: if
zt = (v1,...,v,) is a chromosome, then each element v, has exactly equal chance of
undergoing the mutative process. The result of a single application of this operator
is a vector (v, ..., v}, ..., 0,), with k € 1..n, and v}, a random value from the domain
of the corresponding parameter domainy.

¢ dynamic mutation is one of the operators responsible for the fine tuning capabili-
ties of the system. It is defined as follow: if 2t = (v, ..., v,) is a chromosome, then
each element v, has exactly equal chance of undergoing the mutative process. The
result of a single application of this operator is a vector (vi,...,vL,...,v,), with
ke l.n,
o — { v + A, UB — vg) if a random digit is 0
71 vp — A(t,vp — LB) if a random digit is 1
and UB and LB defined from: domain, = (LB, UB). The dynamic function A(t, x)
returns a random value in the range (0,z), with a non—uniform probability: the

distribution is uniform for ¢ = 0, and denses close to 0 as ¢ increases. This property
causes the space to be searched very locally at later stages of the population life.

Crossover group:

e crossover, defined in the usual way, but with the only permissible split points
between v’s, for a given chromosome z.

e multiple crossover, defined as variation of the crossover with multiple split points.
The number and position of such split points are randomly controlled by probability
p¢, which makes this number proportional to the length of the chromosome.

e arithmetical crossover, defined as follow: if 7} = (v, ..., v,) and 2} = (w1, ..., w,)
are to be crosses, the resulting offspring are ™" = (v;,...,v},...,v,) and 2/ =

(Wi, ..., V..., wy), for some k € (1,n), and v, = a * vy + (1 — a) * wy for some
a € (0,1). In particular, for a = 0.5, the resulting element represents an average of
the corresponding two parent elements.

¢ multiple arithmetical crossover, defined analogously to multiple crossover, as a
variation of the above, and controlled by the probability p™e".

m

e whole arithmetical crossover, a special case of the above, with p»*" fixed at one.

The inverse group consists of only one operator, defined as follow: if 2! = (vy,...,v,)

: : : 1 _
is selected for invesrion, then ;™" = (v1, ..., Ug—1,V;,Vj—1, ..., Vj—k; Vj41, - - - , Up), fOr SOmMe
j € (1,n) and some k < j.

4.3 Other Enhancements

There are a number of other enhancements implemented in the algorithm, which deal
with the convergence problem. A more detailed description is presented in [Michalewicz
et al., 1990]. Here, we will only briefly describe some of them, along with the reason and
need for their application.

There are two, somehow related, problems with the numerical parameter optimiza-
tion by genetic algorithms: premature convergence and variance in the average function
evaluation.

The premature convergence problem is strongly related to the existence of local op-
tima, and depends on the distribution of evaluation values in some population P(t). For
example, assume that ! € P(t) is close to some local optimum, and f(z}) is much greater
than the average evaluation f(z'). Also, assume that there is no x§ close to the global
maximum sought. This might be the case for many multi-optimum, non—smooth func-
tions. In such a case, there is a fast convergence toward that local optimum. Because of
that, the population P(t + 1) becomes over-saturated with elements close to that solu-
tion, decreasing the chance of more global exploration, needed to search for other optimal
solutions. While such a behavior is permissible at the later evolutionary stages, and even
desired at the very final stages, it is quite disturbing at the early ones (¢t = 0). Our ap-
proach diminishes this problem by decreasing the speed of convergence during the early
stages of population existence. This is achieved by changing the way a selection probabil-
ity, normally proportional to f(!)/f(z!), is computed. In here, it becomes proportional
to (t/T)"7 - f(a!)/F(z'), where ¢ is a small positive integer, and T is the anticipated
number of generations. Then, the initial selection (¢ = 0) is random, and it quickly (de-
pending on the magnitude of ¢) becomes closer related to the traditional, environment
(evaluation) guided, approach.

The other problem, also reflecting on the convergence, is related to shifts in the average
population fitness. Consider two functions: fi(z), and fo(z) = fi(x) + const. Since they
are both basically the same functions, one would expect that both can be optimized
with similar degree of difficulty. However, if const > fi(x), then the function fy(z) will

8

suffer from much slower convergence than the function f;(z). In fact, in the extreme
case, the second function will be optimized using a totally random search. Some of the
previous approaches to this problem used rank instead of actual values f(z%) to guide
the selective process. Such an approach suffers from many drawbacks. First, it puts the
responsibility on the user to decide on the best selection mechanism. Second, it ignores
the information it holds about the relative evaluations of different chromosomes. Third,
it treats all cases uniformly, regardless of the magnitude of the problem. In our approach,
we used a dynamic measure of evaluation variance, defined as

5= S (£26) - F(e) /S8 £

Moreover, we experimentally determined that s;_, = 0.10 gives the best trade-off between
convergence speed and space exploration. Now, given a new function to be optimized,
and s;— too far away from s;_,, the system finds parameters a, b, such that mapping
F = a- f+ b gives the desired variance. Thereafter, the system switches to optimizing
function F. In addition, experiments suggest that, in general, it is not necessary to update
the mapping parameters dynamically, as the initial population P(¢ = 0) represents a good
sampling of the solution space.

5 Experiments and Results

In this section we present the results obtained from the specialized genetic algorithm for
optimal control problems.

For each case, we have repeated 3 separate runs of 40,000 generations, and the best
of those are reported in Table 2, along with intermediate results at some generation
intervals. For example, the values in column “10,000” indicate the partial results after
10,000 generations, while running 40,000. It is important to note that such values are
worse than those obtained while running only 10,000 generation, due to the nature of some
genetic operators. For all cases, the population size was fixed at 100. In the next section
we compare these results with the exact solutions, those obtained from the computational
package GAMS, and from the classical genetic algorithm.

Problem (3)—(5) differs from the first one due to the constraint zo = x,. To produce
a feasible initial population, we have generated a random sequence of ug,...,uy_s, and
then set uy_1 =a-xny_1 — xry. For negative uy_1, we discarded this particular sequence
and generated a new one: this happened in less than 10% of cases.

This constraint also introduced some difficulty during the reproduction — an offspring
(after some genetic operations) need not constitute a feasible solution. If this was the
case, we replaced the last component of the offspring vector u using the formula: uy_; =
a-ry_1—2xy. However, if uy_; turned out to be negative, the new element was discarded
(which, again, did not happen in more than 10% of the cases). As mentioned before, we

are currently working on a more general algorithm, able to deal with such constraints

automatically.

Table 3 summarizes the results. Problem (3)—(5) was solved for the following values
of N: N=2, N=4 N =10, N = 20, and N = 45. The population size was fixed
at 100. We also present the intermediate values after the first, 100th, 1000th, 10,000th,
20,000th and 30,000th generations. It appears that, in this case, 10,000 generations is quite
sufficient: the improvement in the next 30,000 generations is insignificant. This result
generates the conclusion that this algorithm performs quite reasonable space exploration
during the early stages of the evolutionary simulation, and then shifts the efforts toward
local fine exploitation. As the results of the next section will show, this fine tuning is

Generations Factor

Case 1 100 | 1,000 | 10,000 | 20,000 | 30,000 | 40,000
I | 17807.4 | 3.27985 | 1.74689 | 1.61866 | 1.61825 | 1.61804 | 1.61803 10*
IT || 13670.4 | 5.33177 | 1.45968 | 1.11349 | 1.09205 | 1.09165 | 1.09163 103
IIT || 17023.8 | 2.87485 | 1.07974 | 1.00968 | 1.00126 | 1.00104 | 1.00103 107
IV || 15077.3 | 8.64310 | 3.75530 | 3.71846 | 3.70812 | 3.70165 | 3.70160 10*
V|| 5956.43 | 12.2559 | 2.89769 | 2.87727 | 2.87646 | 2.87570 | 2.87569 10°
VI || 16657.7 | 5.07047 | 2.05314 | 1.61869 | 1.61830 | 1.61806 | 1.61806 10*
VII || 2680666 | 19.2684 | 7.02566 | 1.63464 | 1.62412 | 1.61888 | 1.61882 10*
VIIT || 116.982 | 67.1758 | 1.92764 | 1.00009 | 1.00005 | 1.00005 | 1.00005 10*
IX || 7.18263 | 4.42849 | 4.37093 | 4.31504 | 4.31024 | 4.31004 | 4.31004 103
X || 9870352 | 138132 | 16096.0 | 1.38244 | 1.00041 | 1.00010 | 1.00010 10*

Table 2. Specialized Genetic Algorithm for problem (1)—(2).

much better, and more efficient, than that of the classical genetic algorithm.

Generations
N 1 100 1,000 10,000 20,000 30,000 40,000
2 6.3310 6.3317 6.3317 6.3317 6.3317 6.3317 6.331738
4| 12.6848 | 12.7127 | 12.7206 | 12.7210 | 12.7210 12.7210 | 12.721038
8 | 25.4601 25.6772 | 25.9024 | 25.9057 | 25.9057 | 25.9057 | 25.905710
10 | 32.1981 | 32.5010 | 32.8152 | 32.8209 | 32.8209 | 32.8209 | 32.820943
20 | 65.3884 | 68.6257 | 73.1167 | 73.2372 | 73.2376 | 73.2376 | 73.237668
45 | 167.1348 | 251.3241 | 277.3990 | 279.0657 | 279.2612 | 279.2676 | 279.271421

Table 3. Specialized Genetic Algorithm for problem (3)—(5).

10

6 Specialized Genetic Algorithms vs. Other Meth-
ods

In this section we compare the above results with the exact solutions as well as with those
obtained from the computational package GAMS and from the classical genetic algorithm.
Exact solutions of the test problems for the values of the parameters specified in Table 1
have been obtained using formulas (6) and (7). The comparison may be regarded as not
totally fair for the genetic algorithms, since GAMS is based on search methods particularly
appropriate for linear—quadratic problems. Thus, the problem (1)—(2) must be an easy
case for this package. On the other hand, if for these test problems the genetic algorithms
proved to be competitive, or close to, there would be an indication that they should
behave satisfactorily in general. Tables 4 and 5 summarize the results, where columns D
refer to the percentage of the relative error.

Exact solution Specialized GA GAMS Classical GA
Case value value D value D value D
I 16180.3399 16180.3939 | 0.000% 16180.3399 | 0.000% 16318.3233 | 0.853%

I 109160.7978 109163.0278 | 0.002% 109160.7978 | 0.000% 110235.2444 | 0.989%
IIT | 10009990.0200 | 10010391.3989 | 0.004% | 10009990.0200 | 0.000% | 10100003.4515 | 0.899%
v 37015.6212 37016.0806 | 0.001% 37015.6212 | 0.000% 37152.5652 | 0.397%

A% 287569.3725 287569.7389 | 0.000% 287569.3725 | 0.000% 288214.4587 | 0.223%
VI 16180.3399 16180.6166 | 0.002% 16180.3399 | 0.000% 16322.2135 | 0.875%
VII 16180.3399 16188.2394 | 0.048% 16180.3399 | 0.000% 16353.8502 | 1.061%

VIII 10000.5000 10000.5000 | 0.000% 10000.5000 | 0.000% 10078.5689 | 0.783%

IX 431004.0987 431004.4092 | 0.000% 431004.0987 | 0.000% 432997.9771 | 0.464%

X 10000.9999 10001.0045 | 0.000% 10000.9999 | 0.000% 10001.2695 | 0.001%

Table 4. Comparison of solutions for the linear-quadratic model.

As seen above (and as expected), the GAMS’s performance for the linear—-quadratic
problem is perfect. The specialized genetic algorithm is only slightly worse: the relative
error is always less than 0.05%, and in most cases less than 0.001%. On the other hand,
the relative error for the classical genetic algorithm is slightly bigger, although relatively
competitive, as well. This results supports the claim that our algorithm performs at least
the same global search as the classical one, while quite significantly improving the local
tuning characteristics.

The differences between algorithms are even stronger for the second test problem, and
the individual systems’ qualities change. To begin with, none of the GAMS solutions was
identical with the analytical one. The difference between the solutions were increasing
with the optimization horizon as shown in Table 5, and for N > 4 the system failed to
find any solution. It appears that GAMS is sensitive to non-convexity of the optimizing
problem and to the number of variables. Even adding an additional constraint to the
problem (uyyq > 0.1-uy) to restrict the feasibility set, so that the GAMS algorithm does

11

not “lose itself”!, has not helped much (see column “GAMS+"). As this column shows,
for optimization horizons sufficiently long, there is no chance to obtain a satisfactory
solution from GAMS.

On the other hand, both genetic algorithms performed about as well (in fact, even
slightly better) than for the first test problem. Therefore, they are, as a class of algorithms,
much less dependent on the characteristics of the function being optimized. It can also be
seen that our specialized version outperformed the classical one again by a small margin
(relatively small, but quite respectable under the assumption that high precision solutions
are being sought). These results support those of the first test case in showing that this
new specialized implementation performs much more respectable local space exploitation.

In addition, it is worthwhile to point out that our new version outperforms the old one
by at least one order of magnitude on the time scale, for comparable implementations.

N Solution GAMS GAMS+ Specialized GA Classical GA

value D value D value D value D
2 6.331738 | 4.3693 | 30.99% | 6.3316 0.00% 6.3317 | 0.000% 6.3317 | 0.00%
4 | 12.721038 | 5.9050 | 53.58% | 12.7210 | 0.00% 12.7210 | 0.000% | 12.7131 | 0.08%

8 25.905710 * 18.8604 | 27.20% 25.9057 | 0.000% 25.8502 | 0.22%

10 32.820943 * 22.9416 | 30.10% 32.8209 | 0.000% 32.7045 | 0.38%

20 | 73.237681 * * 73.2376 | 0.000% | 73.0243 | 0.29%

45 | 279.275275 * * 279.2714 | 0.001% | 278.2168 | 0.38%
Table 5. Comparison of solutions for the linear-quadratic model. The symbol “*” means

that the GAMS failed to find any reasonable value and gave a warning: “The final point
is not close to an optimum”.

7 Conclusions and Future Work

In this paper we have presented a specialized genetic algorithm for numerical optimization.
We applied such an algorithm to two rather simple classes of optimal control problems.
The results, as compared with those obtained from a search-based computational package
(GAMS), and from a classical genetic algorithm, show that, as a generic tool, it out-
performs both competitors. First of all, it is applicable to much broader class of such
problems than the commercial GAMS. Secondly, it obtains much higher precision solu-
tions than the classical genetic approach, and with respectably lower time complexity.
Therefore, it should be a very powerfull tool in hands of a person not familiar with the
problem being optomized. Moreover, it can also be seen as an strong alternative in hands
of a knowledgable engineer.

Currently, work is under way to extend the applicability of this algorithm to much
broader class of parameter optimization problems: those with linear constraints ([Michalewicz

IThis is “unfair” from the point of view of the genetic algorithm which works without such help.

12

et al., 1990]). Such contraints, given to the system in a user—friendly manner, would not in-
crease the complexity of the genetic algorithm, as it was the case for previous approaches.
Instead, they would decrease the search space, when coupled with powerful, closed—space
operators. Another extension that is being implemented involves combining both real
and two kinds of discrete valued domains: linearly ordered integer subrange and nominal
(unordered) set of integers. The real (or continuous) variables are being represented by
the floating point type, the integer ranges by the integer type, and the nominal sets by
a binary coding. Such combinations would be desired for some parameter optimization
problems, where different parameters are of different type, eg. boolean, integers, and real.

Present experiments indicate that, after incorporating all the extentions, a package
implementing this algorithm should be the most powerfull commercially available generic
tool for high precision general parameter optimization problems.

References

[Bellman, 1957] Bellman, R., Dynamic Programming, Princeton University Press, Prince-
ton, N.J., 1957.

[Bertsekas, 1987] Bertsekas, D. P., Dynamic Programming. Deterministic and Stochas-
tic Models, Prentice Hall, Englewood Cliffs, N.J., 1987.

[Brooke et al, 1988] Brooke, A., Kendrick, D., and Meeraus, A., GAMS: A User’s
Guide, The Scientific Press, 1988.

[Davis, 1987] Davis, L., (editor), Genetic Algorithms and Simulated Annealing, Pitman,
London, 1987.

[De Jong, 1985] De Jong, K.A., Genetic Algorithms: A 10 Year Perspective, Proceed-
ings of an International Conference on genetic Algorithms and Their Applications,
Pittsburgh, pp.169-177.

[De Jong, 1990] De Jong, K.A., private communication.

[Goldberg, 1989] Goldberg, D.E., Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison Wesley, 1989.

[Grefenstette, 1986] Grefenstette, J.J. Optimization of Control Parameters for Genetic
Algorithms, IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-16,
No.1, January/February 1986, pp.122-128.

[Holland, 1975] Holland, J., Adaptation in Natural and Artificial Systems, Ann Arbor:
University of Michigan Press, 1975.

[Holland, 1986] Holland, J., Escaping Brittleness, in Machine Learning II, ed. R.
Michalski, J. Carbonell, T. Mitchel, Morgan Kaufmann Publ., Los Altos, CA.

13

[Holland et al., 1986] Holland, J.H., Holyoak, K.J., Nisbett, R.E., and Thagard, P.R.,
Induction, The MIT Press, 1986,

[Michalewicz, 1989] Michalewicz, Z., EVA Programming Environment, submitted for
publication,

[Michalewicz et al., 1989] Michalewicz, Z., Vignaux, G.A., Groves, L. Genetic Algo-
rithms for Approximation and Optimization Problems, Proceedings of the 11th New
Zealand Computer Conference, Wellington, August 16-18, 1989, pp.211-223.

[Michalewicz et al., 1990] Michalewicz, Z., Janikow, C.Z., Vignaux, G.A., GENO-
COP: A Genetic Algorithm for Numerical Optimization Problems with Linear Con-
straints, submitted to Communications of the ACM.

[Vignaux & Michalewicz, 1989a] Vignaux, G.A., Michalewicz, Z., Genetic Algorithms
for the Transportation Problem, Proc. 4th International Symposium on Methodolo-
gies for Intelligent Systems, Charlotte, October 12-14, 1989, pp.252-259.

[Vignaux & Michalewicz, 1989b] Vignaux, G.A., Michalewicz, Z., A Genetic Algo-
rithm for the Linear Transportation Problem, submitted to IEEE Transactions on
Systems, Man, and Cybernetics.

[Vignaux & Michalewicz, 1989c] Vignaux, G.A., Michalewicz, Z., A Genetic Algo-
rithm for the Nonlinear Transportation Problem, in preparation.

14

